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2 CHAPTER 1. INTRODUCTION

1.1 What is PYro?

PYro is a flexible platform for conveniently working with gobs and gobs of
thermodynamic data in scripts and at the command line in Python. The intent
behind PYro is probably best described with an apocryphal story.

There once was a student
with work ethic prudent
she scripted to speed her work.

In Python t’was coded,
so when it was loaded,
she could all the tedium shirk.

A thermodynamic
fluid mechanic
problem she had solved.

Her colleagues were avid
she share the package
frustration to resolve.

Good, was the mood.
Researchers all cooed,
until she read her mail.

With no contradiction,
viscosity-friction;
with it her package would sail.

She furiously typed
new modules to write.
The people, they must be heard.

What thanks had it gotten?
why, STEAM she’d forgotten!
Without it, the code was absurd.

Downtrodden indeed,
she sat at the screen,
multiphase soon to add.

Though coffee was drunk
and sleepless nights sunk,
her code, it really was bad!

The syntax was rambling
no hope of unscrambling
the endless nonsensical edits.

Compatible, reverse,
a programmer’s curse
no fixing - it’s time to shred it.
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“I’m done,” she then plead.
To the airport, she fled.
“I’ll fly off to someplace that’s random.”

Her useful creation
was once a sensation;
forgotten and now is abandoned.

Her colleagues still moan,
“Please pick up your phone!
Your software, it just isn’t working.”

Ye coders beware
the fate most unfair,
within all your projects is lurking.

With a flexible framework that allows users to define their own data and even
their own classes, the hope is that over time PYro will graudally be extended to
do the jobs that people need most, but in a way that is “Pythonic” and exten-
sible. In that way, PYro is distinguished from other excellent thermodynamic
resources (like Cantera) by its emphasis on being application agnostic.

PYro is easily installed using a standard setup script, convenient to use from
the command line, but also highly configurable. To get a feel for how easy PYro
is to use, look at section 1.2.

What can PYro do? The PYro classes supply methods for calculating most
common thermodynamic properties from temperature and pressure such as den-
sity, enthalpy, entropy, internal energy, molecular weight, specific heats, specific
heat ratio, and specific volume.

While version 1.1 included only ideal gas data, version 1.2 includes properties
of water and steam. There are plans to include refrigerants in later releases.

The addition of the psolve() function to all classes makes property inversion
possible. In other words, it is possible to determine the pressure and tempera-
ture at which a substance will have a given entropy and enthalpy. This comes
in handy for cycle analysis and flame temperature calculations.

What can’t PYro do? In addition to many others, all of the species sup-
ported by the GRIMech reaction database are included, but the corresponding
chemical kinetic data are not. While this could possibly change one day, Cantera
already offers excellent chemical kinetics support, so adding this functionality
is not a priority. This is an example where Cantera is probably just a better
tool for the job than PYro.

It is also worth noting here that psolve() is not as robust as it should be for
steam in the vicinity of phase changes. The abrupt discontinuity in properties
causes problems for the Newton algorithim or which psolve is built. This will
definitely be addressed in the future.

http://combustion.berkeley.edu/gri-mech/
http://cantera.github.io/docs/sphinx/html/index.html
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1.2 Getting Started

Whether you are just getting started or you are curious whether PYro will work
for your application, this section should be what you need.

First, we begin with a bit of preparation.

>>> import pyro

>>> import matplotlib.pyplot as plt

>>> import numpy as np

It can be very simple to get some quick information.

>>> O2 = pyro.get(’O2’)

>>> O2.cp(T=432)

0.95049900128261733

It can be very simple to get lots of quick information.

>>> T = np.arange(300,4000,10)

>>> plt.plot(T, O2.h(T))

>>> plt.xlabel(’Temperature (K)’);plt.ylabel(’Enthalpy (kJ/kg)’)

>>> plt.grid(’on’)

Figure 1.1: Enthalpy of diatomic oxygen.

Methods are available to calculate a number of common thermodynamic
quantities; density (.d), enthalpy (.h), entropy (.s), internal energy (.e),
molecular weight (.mw), specific heats (.cp and .cv), specific heat ratio (.k),
and others.
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Data are available for mixtures too. In addition to the typical methods for
calculating properties, the mixture class provides methods to interrogate the
mass, molar, and fractional mass and molar contents.

>>> air = pyro.get(’air’)

>>> air.M()

{u’N2’: 21.88, u’Ar’: 0.373, u’CO2’: 0.013, u’O2’: 6.704}

>>> air.N()

{u’N2’: 0.7810547809262709, u’Ar’: 0.009337138279763693,

u’CO2’: 0.00029539076790238467, u’O2’: 0.20950785654462042}

>>> air.Y()

{u’N2’: 0.7552640662754573, u’Ar’: 0.012875388332758024,

u’CO2’: 0.0004487400759406282, u’O2’: 0.23141180531584396}

>>> air.X()

{u’N2’: 0.780902374928423, u’Ar’: 0.009335316338574262,

u’CO2’: 0.0002953331287638292, u’O2’: 0.20946697560423902}

>>> air.d( T=400, P=2.0 )

1.741805229300913

The info() function prints a summary of all available species.

>>> pyro.info()

PYro

Thermodynamic computational tools for Python

version: 1.2

-------------------------------

ID Modified Type

-------------------------------

Ar 4/7/2016 igfit

Ar+ 4/7/2016 igtab

Ar2 4/7/2016 igtab

C 4/7/2016 igfit

C2H 4/7/2016 igfit

C2H2 4/7/2016 igfit

C2H3 4/7/2016 igfit

C2H4 4/7/2016 igfit

C2H5 4/7/2016 igfit

C2H6 4/7/2016 igfit

C3H7 4/7/2016 igfit

C3H8 4/7/2016 igfit

CH 4/7/2016 igfit

CH2 4/7/2016 igfit

CH2(S) 4/7/2016 igfit

-------------------------------

ID Modified Type

-------------------------------

CH2CHO 4/7/2016 igfit
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CH2CO 4/7/2016 igfit

CH2O 4/7/2016 igfit

CH2OH 4/7/2016 igfit

CH3 4/7/2016 igfit

CH3CHO 4/7/2016 igfit

CH3O 4/7/2016 igfit

CH3OH 4/7/2016 igfit

CH4 4/7/2016 igfit

CN 4/7/2016 igfit

CO 4/7/2016 igfit

CO2 4/7/2016 igfit

Cl 4/7/2016 igtab

F 4/7/2016 igtab

F2 4/7/2016 igtab

-------------------------------

ID Modified Type

-------------------------------

F5 11/6/2015 mixture

FK 4/7/2016 igtab

FN 4/7/2016 igtab

FO 4/7/2016 igtab

H 4/7/2016 igfit

H2 4/7/2016 igfit

H2CN 4/7/2016 igfit

H2O 4/7/2016 igfit

H2O2 4/7/2016 igfit

H35 11/6/2015 mixture

HCCO 4/7/2016 igfit

HCCOH 4/7/2016 igfit

HCN 4/7/2016 igfit

HCNN 4/7/2016 igfit

HCNO 4/7/2016 igfit

-------------------------------

ID Modified Type

-------------------------------

HCO 4/7/2016 igfit

HNCO 4/7/2016 igfit

HNO 4/7/2016 igfit

HO2 4/7/2016 igfit

HOCN 4/7/2016 igfit

He 4/7/2016 igtab

He+ 4/7/2016 igtab

I 4/7/2016 igtab

I2 4/7/2016 igtab

IK 4/7/2016 igtab

Kr 4/7/2016 igtab
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N 4/7/2016 igfit

N2 4/7/2016 igfit

N2O 4/7/2016 igfit

NCO 4/7/2016 igfit

-------------------------------

ID Modified Type

-------------------------------

NH 4/7/2016 igfit

NH2 4/7/2016 igfit

NH3 4/7/2016 igfit

NNH 4/7/2016 igfit

NO 4/7/2016 igfit

NO2 4/7/2016 igfit

Ne 4/7/2016 igtab

Ne+ 4/7/2016 igtab

O 4/7/2016 igfit

O2 4/7/2016 igfit

OH 4/7/2016 igfit

Rn 4/7/2016 igtab

S 4/7/2016 igtab

S2 4/7/2016 igtab

S3 4/7/2016 igtab

-------------------------------

ID Modified Type

-------------------------------

S4 4/7/2016 igtab

Xe 4/7/2016 igtab

air 11/6/2015 mixture

steam 12/24/2015 if97

When called with the name of a species, it returns more specific information
information.

>>> pyro.info(’HCO’)

***

Information summary for substance: "HCO"

***

Uses class: igfit

Loaded from: C:\Users\crm28\WinPython-64bit-2.7.10.2\python-2.7.10.amd64\lib\site-packages\pyro\data\HCO.hpd

Last updated: 10:07 December 5, 2015

These data are adapted from the GRI-Mech website,

http://www.me.berkeley.edu/gri-mech/

and are credited to

B.J. McBride, S. Gordon, and M.A. Reno, ’Coefficients for Calculating



8 CHAPTER 1. INTRODUCTION

Thermodynamic and Transport Properties of Individual Species’, NASA Report

TM-4513, October 1993

A. Burcat and B. McBride, ’1994 Ideal Gas Thermodynamic Data for

Combustion and Air- Pollution Use’, Technion Report TAE 697, December 1993

Adaptation by Chris Martin (c)2015.

Units are supplied in: energy kJ temperature K mass kg molar kmol

>>> pyro.info(’air’)

***

Information summary for substance: "air"

***

Uses class: mixture

Loaded from: C:\Users\crm28\WinPython-64bit-2.7.10.2\python-2.7.10.amd64\lib\site-packages\pyro\data\air.hpd

Last updated: 10:34 December 5, 2015

The composition of air is taken from section 14 page 20 of the the CRC

Handbook of Chemistry and Physics 96th ed, 2015-2016.

www.hbcpnetbase.com

Trace gases (those present in less than 0.01% by volume) are neglected, as

they will not contribute substantially to the thermodynamic properties.

Original work is credited to:

COESA, "U.S. Standard Atmosphere, 1976", U.S. Government Printer Office,

Washington D.C., 1976.

Adapted by Chris Martin (c) 2015.

1.3 Installation

Installation is accomplished through the setup.py script in the root directory
of the package distribution. The following steps should produce a working in-
stallation of PYro.

1. Extract the package
tar -xjvf pyro-1.2.tar.bz2

2. Execute the setup script
cd pyro-1.2

python setup.py install

On a Windows installation, the package will appear as a zip file, pyro-1.2.zip,
instead of a compressed tarball. Right-click on the file and select “Extract All”
to unzip the file. That should create the pyro-1.2 folder, wherein lies the setup
file. From within a command prompt, navigate to the directory and execute the
setup file.
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cd C:\path\to\package

python.exe setup.py install

On a Linux installation, you may need to use sudo to execute the setup
script if you don’t have write privileges to the Python installation directory.

1.3.1 Linux Maual Installation

If you want to perform an unconventional installation, you will need to

1. Extract the package
tar -xjvf pyro-1.2.tar.bz2

2. Build the installation without installing
python setup.py build

3. Copy the installation
Different versions of Python’s Distutils seem to handle the build differ-
ently. For example, with version 2.7.6, the build will be placed in a direc-
tory named for your system configuration.
cp -rv build/lib.linux-x86_64.2.7/pyro /path/to/install/pyro

You will need to check which lib.* directory Distutils created during the
build. With later versions, things are a little simpler.
cp -rv build/lib/pyro /path/to/install/pyro

4. Adjust the permissions appropriately
chmod -R g+r /path/to/install/pyro

5. Add the installation folder to the PYTHONPATH

To temporarily add the folder to the search path, execute the following
command:
export PYTHONPATH=$PYTHONPATH:/path/to/pyro

To make the change persistent, append the same line to your users’ .profile
files.

1.3.2 Windows Maual Installation

If you want to perform a custom installation in Windows, you will need to

1. Extract the package
Right-click and select “Extract All”. This should create a folder, pyro-1.2.

2. Build the installation without installing
python.exe setup.py build

3. Copy the installation
A build directory will appear in the distribution directory’s root. Some
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versions of Python’s Distutils seem to handle the directory names dif-
ferently. You may see a directory named build/lib.* for your system
configuration, while in later versions, the sub-directory is simply named
build/lib. Regardless, the installation of pyro will lie therein. Copy
the entire pyro installation directory to the desired location on your local
machine.

4. Add the installation folder to the PYTHONPATH. This seems to be imple-
mented slightly differently across different versions of Windows.

(a) In Windows 7, navigate to the “System” control panel categorized
under “System and Security” in the main control panel.

(b) Select the “Advanced system settings” link in the menu bar on the
left-hand side of the screen.

(c) You may be prompted to enter administrator credentials. Do so.

(d) A “System Properties” window should appear. Under the “Ad-
vanced” tab, select the “Environment Variables” button.

(e) If the PYTHONPATH variable already exists, then you will need to mod-
ify it by adding a semi-colon and the path to your installation. The
entry may appear
C:\other\entry;C:\yet\another\entry;C:\path\to\pyro

(f) If PYTHONPATH is not present, you will need to create a new variable
named PYTHONPATH with a value set to your path. If you want other
users to be able to access the directory, the variable will need to be
a “system variable”.

1.4 License

PYro is released under the GNU General Public License v3. Details can be
found here: http://www.gnu.org/licenses/gpl-3.0.en.html.

http://www.gnu.org/licenses/gpl-3.0.en.html
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Most of the functions that users will ever need in order to interact with PYro
are exposed in the base module. Everything else is contained in four subordinate
modules; utility, a collection of miscellaneous functions, reg, a registry of all
data classes used in the PYro package, and dat, which manages raw data and
associates them with their respective classes.

3.1 PYro Base Module

The PYro base module exposes all of the functionality most users will ever
need. Though the package has a number of measures to make dynamically
incorporating new data and configuration options easy, these are all contained
in subordinate modules.

The base module exposes two functions; info() and get(), which are re-
sponsible for retrieving information about the data available and retrieving the
data classes themselves. It also exposes a dictionary, config, which contains all
of the user configurable parameters that modify PYro’s behavior.

When the PYro package is imported, it searches for and constructs a registry
of classes that know how to interpret data. Then, it searches for data defining
specific and defines a dictionary of objects representing them. This all occurs
automatically within the reg and dat modules, which are discussed in more
detail in sections 3.2 and 3.3.

3.1.1 config

PYro’s behavior depends on a number of configurable parameters that are con-
tained in the config dictionary. The values of these parameters are loaded
when the package is imported using the load_config() function in the utility
module. Some of the parameters are user configurable (like file and directory lo-
cations) and others are merely intended for reference (like the package version).
Details on these parameters are provided in chapter 4.

3.1.2 info()

The info() function retrieves information on the various species currently
loaded into memory. When it is evoked without any arguments, it prints a
table to stdout listing the names, date modified, and class type of the species
in memory. When called with the string name of a substance as an argument,
info() prints detailed information on the species data.

3.1.3 get()

The get() function accepts the string name of a species to be retrieved from
memory. If such a species exists in memory, get() returns its class object,
which in turn exposes methods for calculating properties.
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3.2 reg: Registry Module

PYro is designed to dynamically incorporate new data and classes either released
as updates or written by users. The registry contained in the reg module is
responsible for managing all of the data classes.

Since it is impossible to anticipate all of the possible data structures or
substances users might want to incorporate into the PYro system, it is essential
that the methods used for calculating properties not be built in to the package.
Instead, the reg module dynamically loads class definitions at load.

The reg module exposes a dictionary, registry, a class __baseclass__,
and a function, regload().

3.2.1 registry

The registry dictionary is a mapping between a data type string, and the cor-
responding class definition for handling that data type. For example, a typical
PYro installation will give the following output:

>>> pyro.reg.registry[’igfit’]

<class ’pyro.reg.igfit’>

The data type strings are necessarily the same as the class name.
When data are loaded in the dat module, they use this dictionary to find

their corresponding class definitions. Exactly how this is accomplished is de-
scribed in detail in section 3.3.

3.2.2 regload()

The regload() function is responsible for populating the registry dictionary.
It is called automatically when the reg module is first imported, but developers
may wish to call it from the command line to incorporate changes.

The entires of the registry_dir configuration parameter constitute a list
of all locations where registry files are supposed to be found. regload() checks
the contents of each directory, in the order listed, for *.py files without a leading
underscore or period (‘ ’ or ‘.’). Any children of the __basedata__ class created
in these files are added to the registry dictionary, and all other objects are
ignored.

By default, the only registry directory is pyro/registry, but system ad-
ministrators may want to allow users to include their own registry directories.
Great care should be taken, however, to prevent standard users from accessing
registry directories that will be used by other users, as this creates a security
risk. Chapter 4 explains more on this.

3.2.3 basedata

This is a prototype class for all PYro data classes. In order for the reg module to
recognize a data class, issubclass( thisclass, __basedata__) must return
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true. To help developers write their own classes, __basedata__ has detailed
documentation, there is an _example.py file in the pyro/registry directory,
and the entire process is described in more detail in chapter 6.

3.3 dat: Data Module

The dat module is responsible for loading, retrieving, checking, and manipu-
lating the thermodynamic data of the various classes. For this task, the data
module exposes the data dictionary, which maps a species name to an object
for manipulating it.

3.3.1 data

Each species loaded into PYro resides in the data dictionary, so that the fol-
lowing lines are equivalent:

>>> pyro.get(’CO2’)

>>> pyro.dat.data[’CO2’]

The data dictionary is populated automatically when the dat module is
imported and can be manually reloaded using the load() function. For more
details on loading, checking, and saving changes to the data, see the load(),
updatefiles(), and new() functions documentation.

3.3.2 clear()

This function empties the data dictionary, and can be useful for developers.

3.3.3 load()

The load() function is extremely important to PYro for standard users and
developers alike. It is executed automatically when the dat module is loaded.
When called without arguments, it scans all directories listed in the data_dir

parameter in the config dictionary for files with a “*.hpd” extension and no
leading underscore or decimal (‘ ’ or ‘.’). Files that meet these criteria are
passed to the load_file() function in the utility module which, if all goes
well, returns a dictionary containing the class data. Finally, the dictionary is
passed to the appropriate class initializer in the reg module, and the resulting
object is added to the data dictionary.

For developers and users interested in adding their own data files, the load()
function can do quite a bit more. If called with the “check” directive set to True,
rather than loading into the data dictionary, it performs a mock load operation
and compares the results with the data currently in memory. It checks for data
entries that have been newly created, deleted, or altered since load. It also lists
any files that exhibit redundant definitions for the same entry, and lists any
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*.hpd files that were suppressed by adding a leading period or underscore to
their file names.

The intent is for developers to construct or edit data at the command line
and use the built in tools to incorporate them into the PYro system.

3.3.4 updatefiles()

When called with no arguments, updatefiles() initiates an interactive process
for bringing the current data dictionary in agreement with the files in the various
data directories. The load() function is called with the check parameter set to
list all discrepancies.

Files with redundant entry definitions and files for entries that have been
removed can be suppressed or deleted. Edits to the data in memory can be
written to the appropriate files, and files for new data entries can be created
automatically.

3.3.5 new()

Useful for users who want to build scripts for creating new data, the new() func-
tion creates a new data entry from a data dictionary as if it had been loaded from
a file. When used in conjunction with the updatefiles() funciton, new data
sets can be easy to implement without ever needing a detailed understanding of
how PYro stores and retrieves data.

3.4 utility: Miscellanea Module

This module is a collection of functions, imported modules, and classes that need
never be exposed to the user. This includes error types, functions for generating
error and warning messages, and most importantly, it includes functions for
interacting with data files. While these objects are documented, few users or
developers should really need to interact with them.
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At load, PYro searches for configuration files that allow users to make persis-
tent changes to the package’s behavior. The values set in these files are loaded
into the config dictionary in the base package, where they can be accessed or
altered from the command line.

The load_config() function found in the utility module is responsible
for dealing with all configuration files. It is called automatically when the PYro
package is first loaded, but it can also be called from the command line to
re-parse the configuration files. More information is provided in section 4.3.

4.1 config Dictionary

Most parameters defined in the config dictionary are mandatory for the PYro
package to work properly. There are precautions taken against deleting or re-
naming entries while parsing config files, but users should take great care if they
are editing config from the command line or in their own scripts.

Entries of the config dictionary that are not intended for editing (such as the
package version or installation directory) are scalar entries (strings, booleans,
integers, or floats), while entries that are lists are intended to be user config-
urable. Every time one of those parameters is discovered in a config file, rather
than overwriting the old values, the load_config() appends the new values to
the list.

This approach has a number of advantages.

1. The functions responsible for parsing configuration files need no special
instructions or knowledge about legal values for each parameter. That is
relegated to the functions and methods that depend on them, making it
possible for users to create configuration parameters for their own data
classes.

2. A complete history for all values of each parameter is available. That
makes it trivial to revert to default values from the command line.

3. No special allowance need be made for parameters that allow more than
one value (such as config_file, dat_dir, etc. . . ).

The biggest disadvantage of this approach is that reading parameters in the
config dictionary can be annoying. For example, the dat_verbose parameter
is a simple boolean parameter indicating whether the dat module should oper-
ate verbosely. A good algorithm should tolerate of the possibility that a well
intentioned user overwrites the list in this parameter with the command

>>> pyro.config[’dat_verbose’] = True

To streamline the series of checks necessary to retrieve a single parameter,
the get_config() function is provided in the utility module. Described in
section 4.4, this function does its best to interpret config entries as scalars and
returns the value.
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4.2 Writing a Config File

Configuration files are written as Python code. Parameters are assigned like
variables

# This is my configuration file

config_verbose = True

config_file = ’/etc/pyro_conf.py’

dat_dir = [’/my/data/directory’, ’/my/other/data/directory’]

# These are my custom parameters!

my_param = ’This is my parameter’

These are executed in an encapsulated environment, and all local variables
are checked against the current configuration dictionary. New parameters are
created as user-configurable parameter lists, and existing parameters are auto-
matically appended to the existing lists. Attempts to write to existing param-
eters that are read-only will result in a warning.

If the above code were included in a configuration file, the resulting config

dictionary entries might appear:

install_dir : ’/home/chris/py/pyro’

config_file : [’/home/chris/py/pyro/defaults.py’, ’/etc/pyro_conf.py’]

config_verbose : [False, True]

reg_exist_fatal : [False]

reg_verbose : [True]

dat_verbose : [True]

dat_overwrite : [True]

dat_exist_fatal : [False]

reg_overwrite : [True]

reg_dir : [’/home/chris/py/pyro/registry’]

version : ’1.0’

dat_dir : [’/home/chris/py/pyro/data’, ’/my/data/directory’, ’/my/other/data/directory’]

my_param : [’This is my parameter’]

dat_recursive : [True]

Note that the dat_dir and config_file entries alike were simply appended to
the default list even though one was written as a string and the other as a list
of strings.

The following is a brief description of each default entry in alphabetical
order.

4.2.1 config file

This is a list of configuration files to be loaded by the load_config() func-
tion. This is a meta-parameter, in the sense that it affects the behavior of the
load_config() function, but can also modified by the configuration files.
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The first file loaded is always defaults.py in the package installation di-
rectory. If the system admin chooses to add a configuration file (like the
/etc/pyro_conf.py example above), this is where it should be added.

After parsing each file, load_config() checks for new entries to config_file
list, so configuration files can be daisy-chained to one another. To prevent cir-
cular references, a history of all files loaded so far is also kept, and redundant
references are ignored with a warning.

4.2.2 config verbose

This parameter is a boolean flag indicating whether the load_config() function
should operate verbosely. It is False by default, but when True, the function
prints a summary of config files and parameters discovered. This can be useful
for debugging.

4.2.3 dat dir

This parameter is a list of all directories in which to look for the *.hpd (Hot-
Py-Data) files that define PYro data entries. By default, it contains only the
data directory in the base installation directory.

4.2.4 dat overwrite

This parameter is a boolean flag indicating whether the load() function should
overwrite existing data definitions with new data definitions with the same iden-
tifier string. By default it is True to allow users to overwrite built-in data with
their own.

4.2.5 dat recursive

This parameter is a boolean flag indicating whether the load() function should
recurse into sub directories when searching for data files. By default, it is True.

4.2.6 dat verbose

This parameter is a boolean flag indicating whether the load() function should
operate verbosely. If True, the function will print a summary of directories
scanned and *.hpd files discovered. This can be useful for debugging.

4.2.7 dat exist fatal

This parameter is a boolean flag indicating whether the load() function should
throw an error if redundant data entries are found. By default it is False to
allow users to overwrite built-in data with their own.
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4.2.8 def P

The _vectorize() function provided by the __basetest__ class will use this
value if the pressure is set to None. As a result, data classes that use _vectorize()
will have a consistent but configurable default condition.

4.2.9 def T

Just like with the def_P parameter, the _vectorize() function provided by
the __basetest__ class will use this value if the temperature is set to None.
As a result, data classes that use _vectorize() will have a consistent but
configurable default condition.

4.2.10 install dir

This is a read-only entry indicating the installation directory for the PYro pack-
age. It can be useful for constructing a relative path.

4.2.11 reg dir

This parameter is a list of all directories in which to look for *.py files to
examine for class definitions to add to the PYro registry. By default, it contains
only the registry directory in the base installation directory.

4.2.12 reg exist fatal

This parameter is a boolean flag indicating whether registry files creating a class
that already exists should result in an error. By default, this is False, so users
can overwrite the default classes with their own if they wanted to.

4.2.13 reg overwrite

This parameter is a boolean flag indicating whether the regload() function
should overwrite existing class definitions with new definitions of the same class
name. By default, it is True to allow users to overwrite built-in classes with
their own.

4.2.14 reg verbose

This parameter is a boolean flag indicating whether the reg_load() function
should operate verbosely. If true, the function will print a summary of files and
directories scanned, and the class definitions discovered. This can be useful for
debugging.

4.2.15 version

This read-only string indicates the package version.
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4.3 load config()

The load_config() function is exposed by the utility module. It is responsi-
ble for parsing all configuration files. If it is called with no arguments, it reloads
the configuration options from scratch, starting with the defaults, and working
through all config files named.

When called with a path to a configuration file as its only argument, it loads
that file only, appending its parameters to the existing configuration options.
This can be useful for debugging config files.

To force load_config() to run verbosely, set the config_verbose param-
eter to True. This can also be quite useful for debugging config files.

4.4 get config()

The get_config() function is a shortcut for accessing parameters in the config
dictionary that are interpreted as scalars rather than lists. This is particularly
useful for users who want to write their own classes that depend on config

parameters. Parameters that are lists are identified only by their last (most
recent) value, and scalar parameters are returned verbatim.

The function requires a string argument, which is treated as the name of
the parameter to be retrieved. It accepts two optional arguments, dtype and
verbose. The dtype parameter is treated as a class to which the result value
is forced. The verbose parameter is a boolean flag which, when set False,
suppresses warnings if the parameter is not found or if there are problems in-
terpreting its value.

>>> pyro.utility.get_config( ’reg_verbose’, dtype=bool )

False

>>> pyro.utility.get_config( ’junk’, verbose=False)

>>> pyro.utility.get_config( ’junk’ )

PYro WARN:: Parameter "junk" does not appear in the PYro

PYro WARN:: configuration file.

4.5 A Note about Security

System administrators who want to create an installation of PYro for all users
should use great caution in how they edit the PYro configuration. PYro is ex-
tremely naive about the files users supply to it. Configuration files are executed
as a script by the load_config() function, and registered class definitions are
also executed. That means that they have all the permissions of the current
user. System administrators should take great care not to allow users to run
one another’s configuration files unless they are trusted users.

For example, if I were a user with malicious intent, I could write a script
with the following commands:
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>>> import os

>>> os.remove(’~/*’)

so that the contents of the user’s home directory will be deleted if that user
has the misfortune to include my configuration script. This same vulnerability
exists in the registry class definitions as well.

In most implementations, this will never be an issue. The configuration and
registry files are deliberately insecure to allow developers as much power and
flexibility as possible. While this may change in future releases, the current
design philosophy emphasizes flexibility over security.

There are multiple solutions, but all of them rely on the system admin to be
aware of the problem.

1. Use the default install, which only references the built-in files and direc-
tories.

2. Make sure user writable config files are only accessed by the users that
own them. This can be done by flexible references, e.g.

config_file = ’~/pyro_conf.py’

reg_dir = ’~/pyroreg’

These measures are already taken in the default installation. Future releases
may have measures to protect against these types of problems, but it is im-
portant to keep these potential problems in mind while tweaking the package’s
configuration.
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PYro data files are in a json file format, which is particularly useful for
flexibly representing data structures with plain text. They are loaded as dic-
tionaries using Python’s json package for dealing with these files. The keys
of those dictionaries can vary however the data author desires. These files are
given a *.hpd extension short for “PYro Data.”

As described in section ??, the load() function is responsible for seeking
out and loading all data files, but for the actual process of parsing and checking
data files, load() calls the load_file() function in the utility module. The
utility function, load_file(), returns a dictionary that results from parsing
the data file, and throws errors or warnings if the file does not meet certain
requirements.

The load() function passes the dictionary returned by load_file() to the
appropriate class initializer (more on that later), which is trusted to do whatever
it needs with the file’s data.

The following sections establish more detail on how data files are structured:

• How are the data files formatted?

• What data elements does PYro require to function?

• How are the built-in files structured

• How can users construct their own files from the command line?

5.1 Data File Format

PYro data files use a *.hpd extension and are written in pain text using JSON
(java script object notation), for which python has support. Detailed informa-
tion about the JSON format is available at json.org, and as usual, Python’s
documentation library has an excellent page on how the JSON package is im-
plemented.

Each *.hpd file contains data for a single substance. When a file in JSON
format is interpreted, it results in a dictionary of data elements that the file
defines. While the elements created by the file are entirely up to the file’s
author, section 5.2 describes the elements that PYro requires in order to make
sense of the data. The rest of the data are whatever the data’s class requires to
do its job.

This structure is intentionally abstract. Very few assumptions are made
about authors’ intent when writing these data and their corresponding classes
to allow them as much flexibility as possible.

5.2 Minimal Data Structure

As one might expect, there are certain requirements for PYro to be able to
work with the data. In order to be loaded successfully by load_file(), parsing
a *.hpd file must result in a dictionary with keys id, doc, and class. Most

json.org
https://docs.python.org/2/library/json.html
https://docs.python.org/2/library/json.html
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classes will have many more, but these are the essential few for interacting with
the PYro package.

5.2.1 id

This is the species identifier string. This is how PYro will reference the data;
for example when using the get() or info() functions. For diatomic oxygen,
the id value is ’O2’.

5.2.2 doc

This is a documentation string. It is expected to hold information about this
particular species. While it can be empty, it is typically a good idea to cite
any sources from which the species data are taken, and this is an ideal place
to include any special copyright information. This value is used by the info()

function to describe the species.

5.2.3 class

This is the class identifier string. The string contained in this field is used to
look up the class for which the data is intended in the PYro registry (see section
3.2). To populate the data dictionary, load() executes commands equivalent
to

class_str = data_dictionary[ ’class’ ]

id_str = data_dictionary[ ’id’ ]

dataclass = pyro.reg.registry[ class_str ]

pyro.dat.data[ id_str ] = dataclass( data_dictionary )

This provides a glimpse of how PYro interacts with the data classes; their
initializers accept the data dictionary as their only argument.

5.2.4 fromfile

The fromfile entry is the only piece of data that is directly manipulated by
the PYro package. Regardless of whether it is defined in the file, the load()

function forces this parameter to the absolute path file name of the data file
from which the data was loaded. This little bit of information can be essential
for untangling redundant file problems.

5.3 igfit Data Structure

The ideal gas fit class uses polynomial curve fits to construct a relationship
for specific heat as a function of temperature. From those coefficients, all other
properties are derived. These particular curve fits are divided into two piecewise
segments representing polynomials at high and low temperatures.
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cp(T ) =


∑N

k=0 Ck,1T
k : T < Tsplit∑N

k=0 Ck,2T
k : T ≥ Tsplit

(5.1)

From this principal piece of information, all other properties are derived
using ideal gas relationships. In order to implement this approach, the following
data elements are used:

5.3.1 C1 and C2

These lists of floating point numbers represent the coefficients of the low- and
high-temperature segments. They are arranged such that the index for each list
element corresponds to the power of temperature for which it is the coefficient.
Or, in code:

>>> T = 400

>>> cp = 0

>>> for k in range(len(C1)):

... cp += C1[k] * (T**k)

...

It should be noted that this is not actually the way the polynomial evaluation
is implemented in the class.

5.3.2 h1 and h2

These floating point constants serve as the integration constants when evaluating
enthalpy. They are related to, but not the same as the enthalpy of formation.
When using the lower temperature curve,

h(T ) =

ˆ
cp(T )dT

= h1 +

N∑
k=0

Ck

k + 1
T k+1 (5.2)

5.3.3 mw

This is the scalar molecular weight of the species. It is primarily used to calculate
the ideal gas constant,

R =
R

mw
. (5.3)
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5.3.4 s1

These floating point constants serve as the integration constants when evaluating
entropy. Entropy is obtained from the maxwell relation,

ds =
(cp
T

)
p

dT −
(
RT

p

)
T

dp (5.4)

The entropy at standard pressure is obtained by integrating across temper-
ature.

s◦(T ) =

ˆ
cp(T )

T
dT

= s1 + C0 ln(T ) +

N∑
k=1

Ck

k
T k (5.5)

The entropy at all pressures can be constructed by then integrating in pres-
sure.

s(T, p) = s◦(T )−RT ln

(
p

p◦

)
(5.6)

The reference pressure used is 101.3kPa.

5.3.5 Tmin, Tsplit, and Tmax

These parameters establish the limits on the validity of the curve fit. Tmin and
Tmax are the minimum and maximum temperatures for which the curve fit is
expected to be accurate. Tsplit indicates at when to switch between the two
sets of coefficients. Below Tsplit, C1 is used.

5.3.6 P ref

This is the pressure at which the ideal gas are taken. For most properties,
ideal gases are insensitive to pressure, but for entropy it is essential to know the
reference pressure. For most data, this is atmospheric pressure, 1.01325 bar.

5.4 igtab Data Structure

The igtab data class relies on specific heat, enthalpy, and entropy to be explic-
itly tabulated as a function of T. Most of the data elements are lists of values
that are interpreted as columns of an ideal gas table. As a result all of the lists
must be the same length.

The values are interpolated cubically in the interior of the data, and linearly
at the extremes.
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5.4.1 cp

This data element is a list of specific heats corresponding to the temperatures
found in the T data element. Since the gases belonging to this class are assumed
ideal, specific heat has no pressure dependency.

5.4.2 h

This data element is a list of enthalpies corresponding to the temperatures found
in the T data element. Since the gases belonging to this class are assumed ideal,
enthalpy has no pressure dependency.

5.4.3 mw

This is the scalar molecular weight of the species. It is primarily used to calculate
the ideal gas constant.

5.4.4 s

This data element is a list of entropies corresponding to the temperatures found
in the T data element. These entropies are interpreted as the entropy of the
substance at reference pressure. The actual entropy is calculated by

s(T, p) = s◦(T )−RT ln

(
p

p◦

)
(5.7)

where s◦(T ) is the tabulated value. The reference pressure is specified in the
P_ref parameter.

5.4.5 T

This is a list of all the temperatures used in the ideal gas table. The values in
the list must be monotonically increasing, and the length of all lists used in the
table must be identical.

5.4.6 P ref

This is the pressure at which the ideal gas are taken. For most properties,
ideal gases are insensitive to pressure, but for entropy it is essential to know the
reference pressure. For most data, this is atmospheric pressure, 1.01325 bar.

5.5 mixture Data Structure

Rather than including explicit thermodynamic data, a mixture only need be
specified by its constituents. As a result, these data are extremely simple to
represent.



5.6. MANAGING DATA FILES FROM THE COMMAND LINE 33

5.5.1 contents

The contents dictionary is a mapping between the species present in the mix-
ture and their respective quantities. The keys are the id strings of each species
present. If the bymass data element is True, then the floating point values indi-
cate the respective masses present in the mixture. Otherwise, the values indicate
a mole or volume quantity present. These numbers need not be normalized into
percentages.

5.5.2 bymass

This is a boolean constant indicating whether the entries of the contents should
be interpreted as mases or molar quantities.

5.6 Managing Data Files from the Command
Line

Because PYro is designed for users to manipulate and add data, there are utilities
that are intended to help with the process. For example, users do not need to
manually edit *.hpd files. For most purposes, it will be easier and more reliable
to use the command line.

The dat module’s new() and updatefiles() functions are incredibly pow-
erful for creating and modifying data. Users can create a data dictionary from
a script or command line, and the new() function will import it into the data
dictionary as if it had resulted from a *.hpd file; calling the necessary class
initializer.

For example, the H35 mixture data entry was created using code quite similar
to the following:

>>> import pyro

>>> H35 = {’id’:’H35’, ’class’:’mixture’}

>>> H35[’doc’] = ’35% H2 by volume and balance Ar.’

>>> H35[’bymass’] = False

>>> H35[’contents’] = {’H2’:35., ’Ar’:65.}

>>> pyro.new(H35)

Once created, these changes to the data dictionary would only be temporary
were it not for the updatefiles() funciton. This utility compares the data
dictionary with the files for changes in either the files or the dictionary. Any
discrepancies are reported and the user is guided through an interactive session
to bring the two into agreement.

New files can be created, data entries that were removed since load can be
either deleted or suppressed. Suppressed files have a leading ’ ’ in their file name
to direct the load() function to disregard them. Redundant data definitions
found in the files can also be resolved by deleting or suppressing files.

>>> hp.dat.updatefiles()
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Of course, users can determine the state of the data dictionary themselves
before changes are actually implemented. The command

>>> CHK = hp.dat.load(verbose=True, check=True)

prints a summary of all *.hpd files discovered (including suppressed ones) and
their comparison with the data in memory. The CHK dictionary keys include
detailed data for the comparison: lists of species identifiers added, changed, or
suppressed; a suppressed dictionary mapping species id strings to the redun-
dant files defining them; and the data dictionary that would have resulted had
the load operation been run normally.
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Through the class registry module described in section 3.2, users are afforded
substantial freedom in writing their own PYro data classes. Provided that au-
thors obey a few guidelines, the PYro system will automatically detect new class
definition files and handle the rest.

Authors can create new data class definitions by adding *.py files to any of
the directories listed in the reg_dir configuration entry (see section 4). Each
file with a *.py extension and without a leading ’_’ or ’.’ is executed. Any
class definitions built on the __basedata__ class (exposed in the reg module)
are added to the registry.

These files are executed in a context where the pyro package is available as
a global for access to any other modules (e.g. pyro.utility.np for access to
NumPy). Similarly, the __basedata__ is a global. Authors who need access to
additional modules or want to create other global references may do so without
concern since only objects that have __basedata__ as a parent are imported
into the registry.

6.1 basedata

The best introduction to the anatomy of a PYro class is probably through the
__basedata__ class itself. Authors who write their own classes are encouraged
to define them as children of the __basedata__ class, since it has prototypes
for all the important functions of a PYro class, and exposes some useful tools
(especially _vectorize()).

6.1.1 init ()

The responsibilities of a PYro data class begin with the __init__() function.
It accepts the class’s data dictionary as its only argument, which is then copied
into the object’s data member. It completes its responsibilities by executing
the __basetest__() and then the __test__() functions.

Authors writing their own __init__() functions for classes should probably
evoke the __basetest__()’s __init__() function with the line

def __init__(self,data):

... special code ...

super(myclass, self).__init__(args)

This is an easy way to include all the error checking code already included in
__basetest__().

Alternately, authors may wish to explicitly include code from the __init__()
function

def __init__(self,data):

... special code ...

self.data = data.copy()

self.__doc__ = self.data[’doc’]
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self.__basetest__()

self.__test__()

Authors who use this approach may want to be aware that their classes will not
track with updates to the __basetest__ class.

6.1.2 basetest () and test ()

The __basetest__() function raises an error if any of the names listed in
the class’s mandatory list member are not found in the data dictionary. The
mandatory list is initialized to include ’class’, ’doc’, and ’id’, but any other
data elements are strictly class specific. Authors should be careful to edit their
class’s mandatory list to include every data element on which their code relies
to operate so any missing dependencies can be caught and reported when the
data is first loaded. A line in the __init__() function can do the trick.

mandatory += [’new’,’data’,’elements’]

Additional checks on the robustness of the data or other class integrity checks
can be implemented in the __test__() function, which is intended to be user
defined. By default, it does nothing. For example, authors might want to
raise an error from inside __test__() if some part of the data does not meet
expectations.

6.1.3 vectorize()

The _vectorize() function is made available to authors to help with the com-
mon task of dealing with property arguments of different dimensions. The
built-in classess build all of their calculations on NumPy arrays, and use the
_vectorize() function to automatically enforce that temperature and pres-
sure inputs are of compatible dimensions. See the function docstring for more
information.

6.2 Authors’ Responsibilities

In order to produce a functional data class, users will need to do the following:

1. Create a class definition that depends on the __basedata__ class in a file.

2. Place the containing file in a directory found in the reg_dir search path.

3. Compose the class’s definition of the mandatory list to include each data
element required for the class to function properly.

4. Assemble data files that PYro can load (see section 5)

5. Compose class methods that can access the resulting data dicitonary to
calculate properties.
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If authors want the class to be compatible with the built-in mixture class,
they should be sure to include the following member methods:

• cp() calculates constant-pressure specific heat in kJ/kg/K

• cv() calculates constant-volume specific heat in kJ/kg/K

• d() calculates the density in kg/m3

• e() calculates the internal energy in kJ/kg

• h() calculates the enthalpy in kJ/kg

• k() calculates the specific heat ratio

• mw() calculates the molecular weight in kg/kmol

• s() calculates the entropy in kJ/kg/K

Units should be kJ for energy, seconds for time, kg for mass, m for length/volume,
and kmoles for molecular counts.
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In a quick review of thermodynamics, there is little hope of discussing the
topic with any rigor, nor is this likely to be a good resource for learning it
from scratch. Instead, these pages are inteded to be a quick reference for the
properties and how they might be used.

A.1 Properties

One way to discuss a substance’s properties is as a set of descriptors for the
substance at a particular thermodynamic state. Broadly speaking, this might
even include even qualitative descriptors like color and smell, but when we are
talking about thermodynamics we are typically talking about different ways of
describing the arrangement and motion of the atoms that make up the sub-
stance. It makes good sense to do that in such a way that is immediately useful
for whatever application we have in mind. If it is important to calculate how
long water takes to cool, internal energy may be an important tool, but if one is
designing a steam turbine, then enthalpy and entropy may be quite important.

A.1.1 Internal Energy

Internal energy describes the amount of thermal energy stored in nuclear, atomic,
molecular, and translational forces with units kJ/kg. If you had to squeeze two
atoms into each other in order to get them to stick together in a molecule; if you
had to whack a molecule to get its atoms vibrating like little masses on springs;
if you gave a molecule a push to get it moving around in space; you increased a
substance’s internal energy. It is probably the most intuitively useful of the end-
less array of thermodynamic properties because it relates all of our hard-earned
intuition about the macro-mechanical world (balls banging into walls and carts
sliding down inclines) to the tiny world inside of substances.

Internal energy is often denoted with a u, but PYro uses e. This notation
associates it with its name in most languages using the Latin alphabet (English,
German, French, Spanish, Portuguese, Italian, Afrikaans, but apparently not
Welsh) and sets it apart in applications that reserve u for velocity and v for
volume. If you don’t like it, just define your own .u() method equal to .e()!
We’ll understand.

Because internal energy is the combination of so many different expressions
of energy, it can get pretty complicated depending on the substance. In version
1.2 of PYro, we focus on substances in a gas phase, so let’s start there. The
molecules that make up a gas are untethered to one another and fly about freely.
To learn more, ask your friendly neighborhood librarian for a book on the kinetic
theory of gases. In a nutshell, it will say that the thing we have long understood
to be a gas’s temperature is really the kinetic energy of molecules banging into
surfaces. The thing we understood to be pressure is just the forces due to the
impact of the same particles. Because the molecules are so very tiny and collide
so very often, we do not perceive their collisions as individual events, but as a
continuum of force and heat.
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The interesting thing is that if temperature is a molecule’s translational
kinetic energy, then very simple molecules (monatomic Argon, for example)
will rarely store energy as anything else, so the energy and the temperature
will quite simply be proportional. However, more complicated molecules can
spin and vibrate in addition to flying around, so there will be a tendency for
energy to be wicked away from what we recognize as temperature and start
showing up in other forms. As a result, these substances will tend to have more
complicated relationships between temperature, pressure, and internal energy;
hence the motivation for software like PYro.

In general, internal energy has a complicated relationship with temperature
and pressure that can be experimentally determined (using calorimetry). How-
ever, many gases behave in a way that makes the job of determining internal
energy quite a bit easier. We can understand why by beginning with a seemingly
unrelated question: if pressure is the force due to impact (determined by mo-
mentum), and temperature is the average kinetic energy of molecules, how is it
possible to independently vary pressure and temperature? After all, molecules
with a prescribed kinetic energy also have a prescribed momentum. The answer
is that nobody ever said anything about the number of molecules. Temperature
is a property that describes the average behavior of each molecule, but pressure
is an aggregate force due to all the molecules in the vicinity of a surface. More
molecules means more force means more pressure. If it is possible to cram more
molecules together without affecting temperature, then it may also be possible
to do the same without affecting internal energy!

When a gas behaves such that internal energy is not a function of pressure,
it is said to be an ideal gas. We also get to use the familiar formula,

p = ρRT (A.1)

to relate pressure, density, and temperature. In fact, if you look closely at the
ideal gas law in equation A.1, you can even see the idea living in the math. For
a given temperature, pressure can be increased by increasing the density of the
gas. For extensibility, PYro accepts pressure as an argument to the property
functions for ideal gas data types (igtab and igfit), but it will only rarely be
used (see entropy).

As of version 1.2, PYro does not install with multiphase data. That will prob-
ably change soon, so it’s worth talking about what happens when substances
stop being gases and start being other things.

When a substance changes phase, the remarkable shift in character of the
substance represents a fundamental change in how the molecules are arranged.
Solids have tightly spaced molecules that are in intimate contact with one an-
other; in sharp contrast to gases. Similarly, liquids also exhibit strong inter-
molecular forces that will tend to maintain their volume (like solids), but not
their shape (not like solids). As a result, pressure in these substances usually
plays only a minor role (if any) for determining internal energy.

What is very interesting is the intense quantity of energy released when
substances shift from gas-to-liquid-to-solid. Called latent heat, this energy is
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what gets released when free-flying gas molecules whack into a liquid, shed
their momentum, and are trapped as a sluggish liquid. Latent heat shows up
in internal energy as an incredibly mathematically inconvenient step change in
internal energy when we move between the phases. PYro doesn’t include it now,
but it will one day.

A.1.2 Density, Ideal Gas Constant, and Molecular Weight

Density describes the amount of something per unit volume in units kg/m3.
Solids and liquids can compress and expand a little, but for the most part
they are quite good at maintaining their density. Gases, on the other hand are
quite squishy. When they behave ideally, we get to use Equation A.1 to relate
temperature and pressure to the density. Buried in that relationship are the
complicated ideas of gas kinetics described above.

It is important to remember thatR in Equation A.1 is NOT 8.314kJ/kmol/K.
It has been scaled by the mass, M , of each molecule, so that

R =
R

mw
. (A.2)

M is often reported without units, because it is adapted to different unit systems
by means of a redefinition of moles. PYro uses kg for mass, so it assumes kmol
as the standard unit for molecular count.

A.1.3 Enthalpy

Enthalpy is an example of the thermodynamic properties defined for convenience
of application. For a gas happily bouncing about in the confines of a container,
enthalpy will do us little good, but when a gas is flowing and pushing on things,
we need to account for both the internal energy and the mechanical work done
by the flow. Put another way, the act of moving a fluid in bulk from one pressure
to another implies work just like moving electrons from one voltage to another
or weights from one height to another.

Enthalpy is defined as

h = e+
p

ρ
, (A.3)

and shares the kJ/kg units of its internal energy parent. But, from whence does
it come?

Consider a steady flow through a volume in space. If the energy in the
volume is to be constant, then the rate of accumulation of energy in that vol-
ume must be zero. Energy will flow into the volume with individual particles
carrying their own internal energy and the motion of materials under pressure
will communicate work through fluid power. If we imagine a tiny surface area,
dS, with an outward-facing unit surface normal, ~n, the rate at which energy is
carried out by bulk flow is ρe~u · ~ndS. The rate at which the flow communicates
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fluid power through the small surface is p~u · ~ndS. A sum of those contributors
over the entire surface must be zero.

‹
S

ρe~u · ~ndS +

‹
S

p~u · ~ndS = 0 (A.4)

It only takes a little manipulation to see why enthalpy is so important.

‹
S

ρ

(
e+

p

ρ

)
~u · ~ndS = 0 (A.5)

In a twist that can only be described as counter-intuitive, if the substance
is an ideal gas, enthalpy enjoys the same insensitivity to pressure as its internal
energy cousin. When we substitute the ideal gas law,

h = e(T ) +RT. (A.6)

A.1.4 Specific Heats

When talking about internal energy, we noticed that substances store internal
energy in lots of ways, and that only some of it manifests in what we would
recognize as temperature. It is extremely common to need to know how much
energy it takes to change a substance’s temperature. Therefore, we define spe-
cific heat,

c =
δq

dT
, (A.7)

where δq is a small quantity of heat added to the substance per mass (kJ/kg),
and dT is the resulting tiny rise in temperature. The use of δq (as opposed to
dq) is the result of an old debate. The argument goes that it’s because q isn’t
a property of the substance. Don’t worry about it.

For complicated substances, hotter molecules may tend to gyrate around
differently when they are cool, so different fractions of their energy will appear
as temperature. As a result c can be quite a strong function of temperature.
However, nice simple substances might exhibit nearly constant c over a wide
range of temperatures. If such a simple substance is a gas, it is called a perfect
gas.

The internal energy of an ideal gas doesn’t depend on pressure, but letting a
gas expand to a lower pressure will definitely cool it. The first law tells us why;
the fluid is doing work, and that energy had to come from somewhere. That
leads us to a conundrum when we are talking about the specific heat of gases;
what is happening to the pressure?

The general definition for specific heat offered by A.7 simply isn’t specific
enough because it doesn’t tell us what is happening to the pressure or volume
of the substance while we are changing the temperature. That may not be
intuitive, so let’s illustrate the idea with two examples.
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First, imagine we want to measure the specific heat of a substance while hold-
ing its volume constant. When there is no motion at the substance’s boundaries
no work is done, so the first law is quite simple

δq = de

=

(
∂e

∂T

)
v=const

dT (A.8)

In other words, the specific heat measured at a constant volume tells us the
fraction of internal energy that we actually observe as temperature. Of course,
if the substance is an ideal gas, then it doesn’t matter how we perform the
partial derivative because internal energy is ONLY a function of temperature.

What if we repeated the same measurement, but while holding pressure
constant? This time, the substance will need to expand to prevent the pressure
from increasing as the material is heated. In solids and liquids, this effect is
nearly irrelevant, but in gases, it is really very important.

δq = de+ pdv

=

(
∂e

∂T
+ p

∂v

∂T

)
p=const

dT

=

(
∂e

∂T
+
∂p/ρ

∂T

)
p=const

dT

=

(
∂h

∂T

)
p=const

dT (A.9)

Here, v is the specific volume or volume per unit mass. Note that if the substance
is an ideal gas it is irrelevant to the partial derivative whether pressure is held
constant.

The idea is that adding heat to a gas can go into making it hotter or making
it expand. Usually, it does both, but there is no way to know how unless the
process is well defined. Therefore, the specific heats of gases are commonly
reported as both constant-volume and constant-pressure specific heats,

cv =

(
∂e

∂T

)
v=const

(A.10)

cp =

(
∂h

∂T

)
p=const

. (A.11)

To make things a little more convenient, their ratio is also commonly treated
as a property,

k =
cp
cv
. (A.12)

The specific heat ratio is also often expressed as γ, but while typographically
elegant, Greek letters just aren’t very convenient at the command line.
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For ideal gases, cv and cp enjoy a very simple relationship which can be
derived from the definition of enthalpy,

cp =
dh

dT

=
d(e+RT )

dT
= cv +R (A.13)

This teaches us that R can be regarded as a kind of measure of the energy that
goes into expanding a gas as it heats.

A.1.5 Entropy

Perhaps the most conceptually inaccessible of all the commonly used thermo-
dynamic properties, entropy is the one that isn’t like the others. Energy and
enthalpy all show up from thinking about conserving energy, but entropy be-
comes useful because of the second law. In a nutshell, we need to enforce that
heat flows from hot to cold and that useful engines reject waste heat.

The definition of entropy is probably best motivated by the Clausius in-
equality. When we add or remove heat to a mechanism undergoing a “cycle”
(like an engine) the temperature of the substance to which the heat is being
cyclically added and removed really seems to matter. The Clausius inequality
tells us that when we follow the substance all the way through one cycle, unless

˛
δq

T
≤ 0 (A.14)

the system will not be able to operate continuously. People’s best attempts
to violate this rule just make the engine accumulate (or lose) energy until it
stopped functioning or the rule was obeyed anyway. For the best heat engine
in the world,

˛ (
δq

T

)
int.rev.

= 0 (A.15)

The subscript is an abbreviation for internally reversible. This describes a cy-
cle built entirely of processes so beautifully executed that they can be driven
forwards and backwards with the same net result. In other words, friction, vis-
cosity, leakage, and all the other nasty little realities of building a real system
have been overcome. As one might expect, that system has never actually been
built.

Well, we used heat addition to define specific heat, so why can’t we use it to
define a new property?

ds =

(
δq

T

)
int.rev.

(A.16)
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There’s no need to stop there, because the substance’s other properties tell us
where the heat goes.

Tds = de+ pdv (A.17)

Tds = dh− vdp (A.18)

We see here that enthalpy will have the same units as R and specific heat,
kJ/kg/K.

Equation A.18 is where we find our source for integrating entropy for ideal
gases. When we have an ideal gas on our hands,

ds =
cp
T

dT − R

p
dp. (A.19)

The entropy at standard pressure is

s◦(T ) =

ˆ
cp
T

dT (A.20)

and the entropy at other pressures is

s(T, p) = s◦(T )−Rln

(
p

p◦

)
(A.21)

If the substance is not an ideal gas, then we’re stuck with Equations A.16
and A.18 to figure out a substance’s entropy. On the other hand, when the
substance is a perfect gas, things get very simple.

s(T, p) = s0 + cpln

(
T

T0

)
−Rln

(
p

p◦

)
(A.22)

A.2 Mixtures

As of version 1.2, PYro includes a mixture class and data for a handful of
common gas mixtures, but it does not include tools for calculating the properties
of mixtures whose compositions are changing (like in a reaction). Instead, that
is left to the user. For the sake of better understanding the mixture class and
helping users to do their own calculations with mixtures, a brief discussion on
the properties of mixtures might be helpful.

A.2.1 Defining a Mixture

A mixture is defined by a set of constituent species and the amounts of each.
Those amounts might be specified as a list of masses, Mk, a list of mole counts,
Nk, or in dimensionless quantities called the mass or mole fraction. The mass
fraction, Yk, is the mass of a specific constituent species in ratio with the mass
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of the total mixture.

Yk =
Mk∑
iMi

=
Mk

M
(A.23)

Similarly, the mole fraction is the ratio of the number of moles of a species in
ratio with the total mole count.

Xk =
Nk

N
(A.24)

As one might expect, they are related. Given a mixture’s mole fractions,

Yk
−1 =

M

Mk
=

∑
imwiNi

mwkNk

= (mwkXk)−1
∑
i

mwiXi (A.25)

and given the same mixture’s mass fractions,

Xk
−1 =

N

Nk
=

∑
iMi/mwi

Mk/mwk

=

(
Yk
mwk

)−1∑
i

Yi
mwi

(A.26)

A.2.2 Mass-Based Properties

The internal energy, entropy, and enthalpy of a mixture can be found by sum-
ming the total extensive properties of its constituents and dividing by the total
mass of the fluid. What does that mean? Consider the enthalpy of a mixture.

h =

∑
k hkMk∑
kMk

(A.27)

A little bit of algebra reveals that

h =
∑
k

hkYk (A.28)

where Yk is the “mass fraction” of each component, Yk = Mk/M .

A.2.3 Volumetric Properties

At first glance, it is less obvious how to proceed for properties that are volume-
based (with units “per-m3”). Consider the density of a mixture of ideal gases.
It is the total mass of the substance divided by the total volume it occupies. A
quick look at the algebra can fool us into believing that we only need calculate
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the densities at the same temperature and pressure and sum them, but this
gives us an unrealistically huge answer. Why? If we calculate the density of
each constituent using the pressure we measured from the gas as a whole, we
are drastically over-estimating the number of molecules of each.

ρ(T, p) =

∑
kMk

V
6=
∑
k

ρk(T, p) (A.29)

Let’s show two ways to approach this problem with the same result. While
the constituent gases may all exhibit the same temperature, each of them will
only contribute to a fraction of the pressure. Called the partial pressure, it is
the fraction of the pressure that is contributed by each constituent, the sum of
which is what we actually measure. It turns out that the partial pressure of
each component is just the mole fraction, Xk, times the total pressure, p.

ρ(T, p) =

∑
kMk

V

=
∑
k

ρk(T, pXk) (A.30)

Similarly, we could have used an algebraically motivated argument,

ρ(T, p) =
∑
k

Mk

Vk

Vk
V

=
∑
k

ρk(T, p)Xk (A.31)

Note that for an ideal gas, these results are actually identical. It is because at
their core, these are the same argument. They both suppose that density and
pressure at a given temperature are just proportional to the number of molecules
bouncing around, so the portion of a volume occupied by a gas is too. Happily,
this thinking extends to ideal solutions of liquids as well.

Unfortunately, as things get less “ideal,” the interactions in mixtures can
become more complicated, and a specialized model might be called for. PYro’s
mixture class relies on the ideal solution and ideal gas assumption to calculate
densities, so beware.

A.2.4 Mole-Based Properties

The same rule applies to mole-based (with units “per-kmole”) properties like
molecular weight. The molecular weight (or mass) is the total mass of a sub-
stance in ratio with the number of moles present.

mw =

∑
kMk∑
kNk

=
∑
k

mwkNk

N

=
∑
k

mwkXk (A.32)
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We therefore have two classes of properties; those that behave as weighted
averages of the masses present and those that behave as weighted averages of
the moles present. Enthalpy, entropy, and specific heats belong to the former,
and density and molecular weight belong to the latter.
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